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NORMAL MODE VIBRATIONS OF SYSTEMS OF
ELASTICALLY CONNECTED PARALLEL BEAMS

by

J. M. Seelig and W. H. Hoppmann II
Rensselaer Polytechnic Institute

Troy, New York

ABSTRACT

The report presents the development and solution of the

differential equations of motion of a system of n-elastically

connected parallel beams. Using the results developed for the

general n-beam system, the particular case of a two beam system

was analyzed in detail. The frequencies and associated mode

shapes for various support conditions are presented explicitly.

Vibration experiments were performed in order to ascer-

tain the degree of applicability of the theory. It was found

that at least up to the eighth mode, reasonably good agreement

obtains.

INTRODUCTION

Flexural vibration of the single bar or beam has been ex-

tensively studied by many investigators. The validity of the

Bernoulli-Euler theory has been studied and interesting gener-

alizations of that useful theory have been developed. Little

work has been done on structures built up from beams. A par-

ticular case of interest consists of a parallel system of thin

beams elastically connected. The dynamics of such structural

units is of interest particularly because of their possible use

in various areas of technology, including that concerned with

space platforms for use in orbital problems.



Preliminary to studies of dynamical response of such

systems it is necessary to determine the normal mode shapes

and their associated frequencies. It is the purpose of this

report to provide explicitly these data and the experimentally

determined basis for their validity.

SYSTEM OF DIFFERENTIAL EQUATIONS OF VIBRATION OF n-BEAMS

Using Bernoulli-Euler beam theory, the system of differ-

ential equations for n-elastically connected beams shown in

Figure 1 can be written:

4w+ P 1 w (1)
+7- I =7 -l(Wl "w2)(i

4 w + Pi a 2 " ki- 1(w. W.l) ki(wi-wi+l) (2)

E 4 wn  a 2wn k(3
n + Pn kn-l(wn - Wn1) ()

According to the general theory of elasticity, the free

vibrations of such a system are harmonic, so we may write for

each wn :

wn - Xn(x)eit (4)

where c is the natural frequency and Xn(x) is a function

of the space variable x only.

Using Eq. (4) the system of partial differential equa-

tions (l)-(3) reduce to the following system of ordinary

differential equations
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Figure 1., System of n-Elastically

Connected Slender Beams



I4
El pl02X - kl(Xj X2 ) (5)
Ell d-.x ." . **

d4Xi
El --T pj!D2X - -i- Xil) ki(X i - Xi+l) (6)

I dx _j(oXjoo_1e

d . .n . . n * ** Xn0

Bin d4 n-PnXn - k.l(Xn Xn-1 )  (7)
dx

Solving these equations Simultaneously, we obtain a single
4nth order ordinary differential equation on say X1

n + oxI  - 0 
(8)

n-1

where the % are in general simple functions of the physical

parameters of the problem and the frequency w. Eq. (8) is

obviously an ordinary differential with constant coefficients

whose solution may be written as usual

X1  ce o x  (9)

Substituting Eq. (9) into Eq. (8) gives the character-

istic equation
n

Z Iin X 0 .(10)

n--

i



I

If we let

S- 111)

Eq. (10) becomes

n

Z n n  0 (12)
n-0

Solving Eq. (12) for the 1's and using Eq. (ii), all

the 's are determined. The solution X1 may now be written

X Z cme (13)
m-I

In the solution of Eq. (12), if any of the n's are

zero or are repeated, the solution (13) to the differential

equation will be modified according to the well known methods

for ordinary differential equations with constant coefficients

for those particular values of in

If solution (13) is then substituted into the system of

ordinary differential equations, we can get X2 ,..., Xn as

follows

x - cije j 1,2,::.,n (l4)j 1#2# 4~on

The summation convention is used for the repeated index where

the cij are linear functions of A's, co's and physical f

constants,



Any elastic rotational or elastic support boundary condi-

tions may be investigated. For each of the beams in the n-

beam system, there will be four associated boundary conditions.

Applying the 4n homogeneous boundary conditions we get

a system of 4n homogeneous simultaneous equations in the

constants ci

asci - 0 -1,.,.,,4n (15)

where the ais are linear functions of h's, W's and physi-

cal constants.

In order to have non-trivial solutions, the determinant

of the coefficients of the ci must vanish.

ja,.j - 0 . (16)

The expansion of determinant (16) gives the frequency

equation. For each natural frequency the ci can be deter-

mined in terms of one of the other ci from Eq. (15). The

complete solution is therefore

w eWix e iut i - l,..,,.4n (17)
S- ije j - l...,n



FREE VIBRATIONS OF ELASTICALLY
CONNECTED DOUBLE BEAM SYSTEMS

As a preliminary to an experimental verification of the

theory and to illustrate the general theory of n-beams, the

case of a double beam system consisting of two identical beams

elastically connected will be studied in detail, The equations

of motion then are:

4 w l 2w 1

= + = - -k(w 1 - w2 ) (18)

a w 2  2w 2
= + P - - w- )  (19)

The solutions may be taken in the following form:

w1  = Xl(x)e m t (20)

W2 - X2 (x)e l wt (21)

Substituting Eqs. (20) and (21) into Eqs. (18) and (19) give

EI - - x " - k(Xl - X2 ) (22)
dx

2--- - - Xl)

dxT P0X

Solving Eq. (22) for X we get
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X2. zl d 4X1 + 1 P_.2)XI (24)

k d-'" k

and now substituting X2  into Eq. (23) we get

2 d2X ) -0 (25)
(E-A2 "- - x  (2I__ __2E _) 1 l (k- 2cDAX

k dx k k k d k k

Letting - - a and -2. - b , Eq. (25) becomes
k k

d8Xl (2a- 2ab dX b2 - 2b 0 (26)-d-x ay - d-'7 T2 "-T

All Ends Simply Supported

Using the procedure outlined for the 'n-beam case, we will

now treat the case of two beams being simply supported. The

boundary conditions for this case are

x1(o) - 0 x1(z) - 0

W(o)-- 0 x"(1) - 0

(27)

X2(o) - 0 X2(1) - 0

,x;(o.) - 0 x;(A) - 0

FProm the boundary conditions (27) and using expression (24)

we finally get the determinantal equation
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Solving the determinantal equation (28) the frequencies

and associated mode shapes are shown to be:

(a)

0)2 . E 4 (29)

P

X1 = A'sin-----

(30)
X2 - Alsin----

(b)

.2 4( + 2 (31)
p. £ p

X1  - A'slin ---

(32)
X2  - -A las n -- -

Following a procedure exactly analogous to the one out.

lined, the mode shapes and their associated frequencies for

the following cases have been determined.

All Ends Free

(a)

w 2 i 4.EI
P



where

c0o kni cosh knim 1

oo osh 1Cx + cos knx sinh knx + sin x
X1 At 'Cosh knA -cookni sinh kn -sin k1.11

(b)

W2 =kn 4ElI 2k
p' p

where

cos kni cosh knJ - 1

3M osh knX + cos knx ,sinhknX + sin knx}61osh ki - cooe i sh - sin ih -

'X2 =_X 1

As another possible solution each bar of the system may

vibrate as a rigid body both angularly and transversely with

frequency

2 .2k
P

There also exists the trivial solution where the system

translates and rotates as a rigid body without vibration,

- l1.



All Ends Fixed

(a)

p

where

coB kni cosh kni - 1

x At sinhkn(X4) s "in k (x

sinh 2sin -

X2 =

(b)

c02 - n 4 iEI + 2k
p p

where

CoS kni cosh kn

A{sinh kn(x~4 sin kn~-

sinh W- sin
2 2

2X2  .X
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Double Cantilever, Both Beams Fixed at 0

(a)

02 k 4EI
p

where

cosk coshk = -1

WA osh knx -cos knx sinh kx - sin knx
.1 = A osh k. + cos k " sinh ki + sin kjj

(b)

,w2.- n E + 2~k

p p

where

cosokn coshk - -1.

X1MAt -osh knx - coo knx sinh knx - sin kx 1
L.-osh kni +cooakni sinh kni+ sin k,,A
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Double Propped .antieOversm Beams ie at End I

(a)

(02 - 4I
P

where

ta kn - tan kn'

A'rinh sin knx

x2X1 snh kni sin nX2 - X1  •

(b)

w2 - kn 4Ei + 2k
p P

where

tanh kni tan kn'

X- A' Jsinh knx si

Lanh kn' sn ~

X2 - Xl

All of these results are shown in tabular form in Figure 2.

One &r Simply Supported, Other Bar Free

In all of the previously determined oases, there exists

a symmetry between the boundary conditions for the two beams.

-14-
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Due to this, the 8 x 8 determinant was reduced to the evalua-

tion of two 4 x 4 determinants. If however, this symetry is

not present, the zeros of the 8 x 8 determinant must be found.

As an example the following case is shown.

The boundary conditions for one bar simply supported,

the other free, are

xl(o) - Xl() - 0

x(o) - ox(0) - 0

(33)
x (o) - 0 x (A) - 0

xy,(o)- 0 xj() - 0

Using relationship (24) and the boundary conditions the

following determinantal equation is obtained.
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The zeros of determinant (34) are now found giving the

natural frequencies. From these terms the mode shape asso-

ciated with each natural frequency can be determined. For a

specific case they are shown in Figure 3.

VIBRATION EXPERIMENTS WITH DOUBLE BEAM SYSTEM

The experimental model used (See Figure 4) in the normal

mode vibration experiments was supported on a massive rein-

forced concrete base 3' x 3' x 10'. The beam supports were

made of 3/4" steel plates, in which provision was made for

the placement of pin and roller supports. The pin support

consisted of an actual pin placed through the bar at its mid

height, while a roller support was provided by use of four

roller bearings placed on the lateral boundaries of the bar,

so as to provide a momentless end condition which would, how-

ever, allow axial motion of the bar. Tracks were placed above

and below the model and were firmly attached to the steel

support plates giving added rigidity to the supporting

structure.

The model tested consisted of two 1/2" x 1/2" x 39.9"

parallel bars, elastically connected with 20 coil springs

placed on 2 inch centers. The bars were cut from standard

cold rolled sections and had a Young's modulus close to 29 X

106 psi as determined by test. The springs were 2.0" in

length and had a spring constant of 40 pounds per Inch. They

were affixed to the bars using Duco cement.
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The system was driven by an electromagnet supplied1 from

an oscillator. The output of the oscillator was displayed on

the upper beam of a Type 502 Tektronix Dual Beam Oscilloscope.

The response of the model was obtained using capacitive type

pickups2 placed on the aforementioned tracks. This signal

was displayed on the lower beam of the oscilloscope. Resonant

frequencies were determined by examination of the capacitive

pickup response as the frequency spectrum was traversed. A

marked increase in response indicated a resonant frequency.

Due to the pull-pull characteristic of the electromagnet, the

frequency response of the beam system was twice the frequency

set on the oscillator.

The upper beam vertical amplifier was then switched to

the horizontal deflection plates and a figure 8 Lissajous

figure resulted due to the 2:1 frequency ratios. The capaci-

tive pickup was then moved on he track until the figure 8

horseshoe degenerated to a svLoaight line. Continued movement

of pickup inverted the figure 8 horseshoe. The nodal point

was located when the straight line configuration was observed.

Both bars were checked at the various resonant frequencies

1W. H. Hoppmann II, N. J. Huffington, Jr., and L. S. Magness,

"A Study of Orthogonally Stiffened Plates", J. Appl. Mech.,
23, p. 343o (1956).
S . N. Shafer and R. Plunkett, "A Miniature Oscilloscope and

Vibration Pickup for Nodal Pattern Tracing", Proc. Soc. xp.
Stress Analysis, 13, No. 1, p. 123, (1955).
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and all nodal points wore recorded. In order to determine

the phasing of the vibrating bars, the responses of two ca-

pacitive pickups, placed at corresponding locations of the

bars, were displayed on the upper and lower oscilloscope

beams. A difference dwitch on the Type 502 algebraically

subtracted the lower beam input from the upper beam input.

As one pickup was above the beam system and the other below

it, the response when two points of the system were in phase

resulted in a zero amplitude (straight line) sine wave, while

when they were out of phase, a sine wave whose amplitude was

the sum of the amplitudes of the original sine wave responses

was observed.

The relative amplitudes of displacement were determined

using micrometer barrels fitted with conical caps. The mi-

crometers were electrically connected to a unit3 which, when

contact was made by a micrometer with a bar, a clicking

switch as well as a neon light would be activated. Initial

readings on the micrometers which were set at various loca-

tions on the bars were made with the system at rest. The

system was then driven at a resonant frequency. The microme-

ter heads were then made to Just contact the vibrating bars

and additional readings were made, By differencing these

3W. H. Hoppmann II, "Impulsive Loads on Beams", Proc. Soc.
Exp. Stress Analysis, 10, No, 1, p. 157, (1952).
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readings, the relative amplitudes of displacement were deter-

mined.

The mode shapes were drawn using the results of the nodal

point, phasing# and relative amplitude measurements.

Three cases, each with different end supportp, were

tested. These were: Case I -'all four boundaries simply

supported; Case II - all boundaries free; Case III - upper

beam simply supported, lower beam free, For Case I, light

string was suspended from the upper track and was looped on

the upper beam, at locations corresponding to the locations

of nodal points for the particular resonant frequency being

investigated, as support for the system. The location of the

string supports at the nodal points did not change the free-

free boundary conditions and, therefore, did not introduce

any error.

As a check on the pin and roller supports1 a single beam,

simply supported, was driven and its resonant frequencies

were determined. These values were checked against calculated

theoretical values. The values were within a few percent of

one another, indicating a reasonable approximation to simple

support conditions.

NUMURICAL EXAMPLES AND EXPERIMENTAL RESULTS

In order to provide a basis for comparison between calcu-

lated results and experimental results the double beam system

-23-



chosen corresponded to those used as models in the experimental

work.

For purposes of illustration, three cases were investi-

gated. These were: Case I - all four boundaries simply sup-

ported; Case I' - all boundaries free; Case III - upper beam

simply supported, lower beam free.

Using the formulae shown in Figure 2 and Figure 3, the

frequencies in Tables 1, 2, and 3 were computed. The experi-

mental frequencies shown in Tables 1, 2, and 3 were determined

by the procedure outlined in previous section.

Case I - All Four Boundaries

Simply Supported

Calc Exp
v.p, 5.

28 29

79 79
113 112
135 137

253 244f
264 261
451 456
460 490

Table 1
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Case II - All Boundaries Pree

Cale Exp

65 64
98 97

178 173
192 191
350 .334
358 35k
578 574
583 590

Table 2

Case III , Upper Beam Simply
Supported, Lower Beam Free

Cale EXp

23 23
49 48

72 70
84 84

128 126

205 182

Table 3

For Case III, if Fiture 3 is used for combinations of A,

El and k, the same vales of c will be found as for the

particular case investigated.

The location of nodl points for all cases investigated

checked to within 2% of their calculated values.
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CONCLUSIONS AND DISCUSSION

Theory has been developed for the free vibrations of

n-elastically connected parallel beams. As a consequence

the normal mode shapes and associated natural frequencies can

be calculated for any combination of homogeneous boundary con-

ditions. For a-very small number of beams the calculations

can be conducted with simple computational devices. However,

for a larger number of beams it is clear that high speed com-

puters will be required.

For the double beam system the frequencies and normal

mode shapes have been determined for several interesting

boundary conditions. Results have been tabulated and compared

with those obtained from experiments on steel beams coupled

with steel springs.

It is concluded that for the lower modes# at least up to

the eighth, the agreement between theory and experiment is

very good.
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